1. Write the division shown on the place value chart below.

Tens			Ones			
10	10	1	1	1	1	
10	10	1	1	1	1	
10	10	1	1	1	1	
10	10	1	1	1	1	

2. Put the ladybirds into four equal groups to solve the calculation below.

How many ladybirds are left over?
3. Complete the division below using information on the number line.

4. Isabelle has solved the calculation below.

$$
65 \div 4=15 \mathrm{r} 5
$$

Tens	Ones
10	(1) 1 1 111^{1}
10	(1) 11 (1) 1
10	(1) $11^{1} 11$
10	(1) $11{ }^{1} 1$

Is she correct? Explain your answer.
5. Mr Hanson is stacking chairs into equal groups. Some chairs will be left over.

He says,
I have 51 chairs to stack. There is only one way of stacking the chairs so there are some left over.

Is he correct? Explain your answer.
6. Use the digit cards below to create a division with a remainder.

Find 3 possible answers.

Divide 2 Digits by 1 Digit 3

1. $98 \div 4=24$ r2
2. $46 \div 4=11 r 2$
3. $59 \div 5=11 \mathrm{r} 4$
4. Isabelle is incorrect because the remainder is larger than the divisor. The remainder 5 can still be divided by $4.65 \div 4=16 \mathrm{r} 1$.
5. Mr Hanson is incorrect. There are multiple ways he can stack the chairs where there will be some left over. For example, he could stack them in groups of 8 because $51 \div 8=$ 6 r 3 or he could stack them in groups of 10 because $51 \div 10=5 \mathrm{r} 1$.
6. Various answers, for example: $71 \div 3=23 \mathrm{r} 2,70 \div 3=23 \mathrm{r} 1,53 \div 3=17 \mathrm{r} 2$ and $52 \div 3=$ 17 r 1 .
